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Abstract—Thermal analysis for the divided-flow heat exchanger with an arbitrary number N of tubeside

passes is made and corresponding temperature equations are derived. By means of these equations thermal

effectiveness, mean temperature difference correction factor and the temperature at a given location on the

exchanger surface are calculated. Also, the optimum entrance location of the shellside flow and the influence
of the division of the sheliside flow upon the pressure loss are discussed.

1. INTRODUCTION

THERE are many industrial process reasons—better
balance required between the shellside and the tube-
side heat transfer coefficients, vibration problems,
more effective use of available shellside pressure drop
in low-pressure-drop cases—that lead to the appli-
cation of shell and tube exchangers with various con-
figurations. One of such exchangers is called the
divided-flow heat exchanger, designated as the ‘J-
type’ in TEMA standards [1]. Provided the shellside
heat transfer resistance is not the limiting factor and
entrance as well as exit losses are neglected, the shell-
side pressure loss is reduced to approximately one
eighth of that of the conventional shell and tube heat
exchanger.

Gardner [2] derived equations for the mean tem-
perature difference of one tube pass divided-flow heat
exchangers. The analysis of two tube pass and one
shell pass divided-flow exchangers was made by Kern
and Carpenter [3]. Jaw [4] showed a simplified deri-
vation for two tube passes and presented a new deri-
vation for four tube passes. However, all these studies
were restricted to the middle entrance of the shellside
flow and even distribution of mass flow rate in each
half of the exchanger as constant overall heat transfer
coefficient U throughout the exchanger.

Heat exchangers with one shell pass and N (N = 1,
2, ...) tube passes are often referred to as 1 —N ex-
changers. The thermal analysis for 1 — N conventional
heat exchangers has been carried out [5]. The purpose
of this paper is to present an analysis method for | — N
divided-flow heat exchangers with arbitrary NTUs,
arbitrary distribution of the mass flow rate on the
shellside and variable entrance locations of the shell-
side flow. The formulas for calculating temperatures
of the shellside fluid and of the tubeside fluid in each
tube pass, the thermal effectiveness and the mean tem-
perature difference correction factor F will be derived.
The related graphs will be made. 1-2 divided-flow
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exchangers will be taken as an example to be com-
pared with conventional shell and tube exchangers.
Also, the pressure loss on the shellside and the opti-
mum entrance location of the shellside flow will be
discussed.

2. FORMULATION

Figure 1 shows schematic representations of the
heat transfer process in 1— N divided-flow heat ex-
changers. The flow pattern in (a) is designated as
Sc = 1 and the flow pattern in (b) as Sc = 2. Because
of the division of the shellside flow, the whole heat
transfer region is divided into two subregions, which
are designated as subregions e and f, respectively.
In the analysis the following assumptions are made:

(1) The shellside fluid is completely mixed at any
transverse section. No bypassing and stratification
occur.

(2) Piecewise constant heat transfer coefficient : the
heat transfer coefficient is assumed to be constant
within one pass in each subregion, but it may vary
with passes and subregions.

(3) There is no phase change and heat losses are
negligible.

(4) The specific heat capacities are constant
throughout the exchanger.

As shown in Fig. 1, the origin of the coordinate
system is always located on the left of subregion ¢. To
facilitate the derivation, some dimensionless variables
and parameters are introduced as follows
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NOMENCLATURE
a heat transfer surface area along the flow T dimensionless temperature vector
path [m?] U overall heat transfer coeflicient
A total heat transfer surface area of the [Wm~ 2K~}
exchanger [m?} W  thermal flow rate [W K]
b constant coefficient X dimensionless flow path coordinate
¢, d,p,q constant coefficients z function defined by equation (49).
C,, D; eigenvectors
E,F, W coefficient matrices
F mean temperature difference correction Greek symbols .
factor a constant coefficient
G.Y coefficient vectors B division ratio of the shellside flow rate
k.l constant coefficients to be determined & ratio of NTU, in tube pass i to the overali
I it matrix NTU of the exchanger
I flow location of fluid [m] (? te?mperature (K]
L length of exchanger [m} “ cigenvalue
N number of tube passes g parameter .
NTU number of transfer units, ¢ const?nt coefficient .
NTU, = UAJW, NTU, = UA/W, ¢ functfon deﬁnf:d by eqluatlon (50)
P dimensionless temperature change @ velocity of fluid [ms™ ).
through the exchanger
AP pressure loss [Nm~ 2} o Subscripts
R therma} ﬂoyv rate ratio, R, = W,/W,, ¢,E subregion ¢
R, = .Wz,/W, . f,F  subregionf
Sc tubeside flow pattern shown in Fig. 1 Ls shellside
tiin int;rmediate temperature of the tubeside 3 tubeside
fluid ) i,j  order number of elements of matrices.
At,,  true mean temperature difference
Ar,, logarithmic mean temperature difference
t dimensionless temperature of the Superscripts
tubeside fluid ! inlet
T dimensionless temperature of the " outlet
shellside fluid * conventional shell and tube exchanger.
NTU. = % NTU. = LA thermal flow rate ratio § is introduced, which allows
YW, T W, for arbitrary division of the shellside flow rate between
two subregions. The shellside fluid is divided at any
6 = (UA); = (NTU ), = (NTU>); ratio f, and its entrance may be located at different
tv4 NTU, NTU, positions, According to the heat balance and by means
o, —¢ 0, -9, of the above-defined dimensionless variables, tem-
Py= 70, Py = b —0, perature equations can be obtained for each sub-

Obviously, the following relationships are valid :
N
28[:: 15 ﬁe+ﬁt’= 1 (1)
i=1

P, NTU, W
Lol L LR )
P, NTU, W,
At the entrances and the exits of the exchangers one
has

T'=1, #,=0, T"=1-P, =P, (3

In this paper, the theory for divided-flow exchangers
is extended by introduction of the NTU-ratio ¢, [5],
which allows for different surface areas and heat trans-
fer coefficients among the tube passes. Further, the

region. For subregion ¢ (0 € x < x,)

dt:i

(UADAT~t) = i(ml)"Wza (i=1,2,....,N)
@
d7, < ; Wz dt,;
i PN A )
For subregion f (x, < x < 1)
WATi—1) = 25T (=1.2....,)
6)
de = i WZ dtfi .
TP
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Regarding the relation Z{": 1 & = 1, equations (4) and

(5) as well as equations (6) and (7) can be rewritten
as

((1;_:: i(_l)iNTUZSi(Te_tei) (l= 1’2""’N)
(®)
dT. NTU, NTU, &
= T.— Eile; 9
dx Be ﬁe igl ( )
and
dy; ; :
a};= i(——l)‘NTUzE,'(Tf_tfi) (1= 1,2,...,N)
(10)
dT; NTU, NTU, ¥
ot T+ &ty 11
dx B ! Br i=zl ! (1n

where the minus sign (—) and the positive sign (+)
of sign (+) in the above-mentioned equations are
valid for tube flow pattern Sc = 1 and for tube flow
pattern Sc = 2, respectively, which are shown in
Fig. 1.

To solve these (2+2N) linear ordinary differential
equations of the first order, the corresponding
(2+2N) boundary conditions are needed. The con-
crete expressions of the conditions are dependent on
some factors, such as the tube pass number N (odd
or even) and the tubeside flow pattern. Table 1 gives
the tubeside boundary conditions and Table 2 the
shellside.

In matrix notation the homogeneous system of
equations (8) and (9) appear in the form

—E_ET,

dx (12)

where T = (), tes, .. ., ten, T.)" and E is a coefficient
matrix with order (N+ 1), the elements of which are
given as follows:

(a) Sc=1
FiG. 1. Thermal scheme of 1 — N divided-flow heat exchanger.

i#j

i=j Lj=12,...,N

0
= {i(—l)"“NTUzsi

einer = +(—1)NTUye, i=12,...,N

NTU, ¢

- ﬂ,e, j=12...,N
eNy1j = ¢

NTU

7 ! j=N+1.

Similarly, the homogeneous system consisting of
equations (10) and (11) can also be formed as

—f = FT,

dx (13)

where Te = (1, tr, - - - » v, To)T and F is also a con-
stant coefficient matrix with order (N+1), the ele-
ments of which are given as follows:

0 itj
Ji= e (=0 NTUe, =y BB ON
fivir= £(=D)NTUs5, i=1,2....N

NTU,
MG 1,2, N

fN 1= ﬁf

Y NTU, .
ST o N+l
B¢

Now we will seek a general solution matrix for each
subregion by means of eigenvalues and eigenvectors.
Assuming Cexp (4.x) to be a solution of system (12),

one has
(E-2I)C = 0. (14)

In order to obtain a non-zero solution for vector C
one must have

det (E—A]J) = 0. (15)

This is a polynomial equation of degree (N+1) in 4,
and hence there are (N+1) roots 4, (j=1,2,...,

(b) Sc=2
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N+ 1), which are called eigenvalues of matrix E and
the corresponding vectors C; (j=1,2,...,N+1) are

called eigenvectors of E
N T
C=(CipCop o rCypry) -

In the same way, for the homogeneous system {13)
there is

F-2D)D =0
det (F—AJ) = 0.

(16)
(17

From equations (16) and (17) one can obtain eigen-
values 4; (j=1,2,...,N+1) and corresponding
eigenvectors D; (= 1,2, .. ., N+ 1)

Dj = (dije dzj? s ,d.'w Lj}r'

If matrices E and F have distinct eigenvalues, respec-
tively, the unknown temperatures can be described as
N+1

Te= Y hCexp(iyx) (18)
j=1

N+
Ty = Z: LD exp (4;x) (19)
=
where &, [, (j=1,2,...,N+1) are constant coeffi-
cients to be determined with the boundary conditions
given in Tables 1 and 2.

However, in the case that there are multiple eigen-
values, solutions (18) and (19) may not be directly
used and they must be corrected. For example, if 4,
is a root of multiplicity m and 4y is a root of multi-
plicity n, a solution of forms is suggested [6] to treat
this case

Tg; = C(x) exp (Agx)
T = Di(x) exp (A5x)
where C/(x}) is a polynomial of degree (m—1) and
D,(x) is a polynomial of degree (n—1)
CAx) = po+pix+pox*+ - o4p, (X771 (20)
Dix) = g+ g x+qax + g, XL 21D

Substituting equations (20) and (21) into equations
(12) and (13) and equating coefficients of x, one can
obtain

Y. XUAN et al.

Table 2. Boundary conditions for T,(x) and T\{x)

Location x=x.=LJL

T(x) Tlx) =1, Tdx} =1

(E—4;Dp,, 1 =0
E—=2,D)pp_ 2= (m—1)p,,_,
(E—)“ejl)pm-—f( = (m—z)pm~2

E—2,Dps=p,

(22)
(F—2;Dg,_, =0
(F_xfil)q;zvz = (ﬂ'— 1)‘1»~ 1
(F_/lfil)qnvl‘ = (”_2)‘]»-2
F-2Dg0=q.. (23)

Since det (E— 4.) = 0in equations (22), the remaining
non-homogeneous equations can be solved step by
step, provided that the rank of (E—A,I) 1s equal to
the rank of the augmented matrix formed by (E— A,
with non-homogeneous terms in equations (22). A
similar result is also available for equation (23). On
finding C;(x) and D;(x), one is able to obtain the
general solution forms for the case of nwltiple eigen-
values A,; or A;; by substituting C;(x) for C;in equation
(18) and D;(x) for D; in equation (19).

Coefficients h; and /, must be determined to derive
the particular solution for the original problem. In the
light of the boundary conditions given in Tables 1 and
2 as well as equations (18) and (19), a matrix equation
with order (2N +2) for these coefficients arises

WY =G 24)
where
Y= (oo shys o linda oo odys )F
G=(0,0,...,0,1,1)7

if the boundary conditions for the shellside fluid are
taken as the last two equations.

Table 1. Boundary conditions for z,(x} and #,(x)

x =10 x=x,=LJL x=1
N l = Loy 1 = fojig L = Iy I = Iney = iy
even P=2.4,..., N=-2 i=1,2,..,N i=1,3,...,N-1
ty=10
Se=1 3
N fy = L1 = Lugan Ly = Iy Iy =15y = I,
odd i=2,4,..., N—1 i=12,...,N i=13,..., N-2
ty =0
N 1y feivn Teiiva fo =y Iy = Iy = Iijyn
even i=1,3,...,N—1 i=12,...,N i=2,4,...,N-2
th =0
Sce=2
N Loi =l 1 = lejiny Loy = Iy Iy = lypy = Iy
odd i=1,3,...,N~-2 i=12,...,N i=2,4,...,N—1

th=0
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Matrix W with (2N +2) order, has elements which
depend on the tube pass number, the tubeside flow
pattern and the multiplicity of eigenvalues A, as well
as Ay For example, for the case that Sc =1, Nis an
even number and all eigenvalues are distinct, elements
of matrix W are given as follows:

from t,; = ¢,;,,, at x = 0, one has

Ci—Civ1
Wy = 0

from t; = ¢;,, , at x = 1, one has

1<jSN+1
N+2<j<2N+2

0 1<j< N+
YT \(dy—diy 1) exp () N+2<j<2N+2

i=13,...,N—1;

from 7., = 0 at x = 0, one has

Cyj
Wy = 0

from t,; = t;; at x = x,, one has

I<j<N+1
N+2<j<2N+2;

Ci; €xp (AgXc) 1<j< N+1
Witng = —d,-,,-,-exp (Afjjxe) N+2 Sj <2N+2

i=12,...,N;
from T, = 1 at x = x,, one has
Cwy 1, EXP (hyx) 1 << N+1
Wavers = {0 N+2<j<2N+2;

from T, = 1 at x = x,, one has

0 1<j<N+1
Yo T Vg, sexp(gx) N+2<j<2N+2

where jj =j~N—1,if N+2 <j<2N+2.
Then, Y can be calculated according to

Y = W-'G. (25)

So far the temperatures T.(x), Ti(x), t(x) and t5(x)
(j=1,2,..., N)are determined. Thus, the outlet tem-
peratures of T, and T} appear in forms

Ti=T.x=0), T{=Tdx=1) (26)

and the final outlet temperature of the shellside fluid
is

_ W.T0)+ W T«

T//
W,

= BT.0)+BT{(1) (27)
and the temperature change of the shellside fluid in
the divided-flow heat exchanger is

Pi=1-T"=1-(B.T.0+5T(1). (28)

Therefore, the final temperature change of the tube-
side fluid through the exchanger (called the thermal
effectiveness) can be obtained

_ P1W1 _ m
P,= W, - (1-B.T(0)— BT (1)) w,
N+1 N+1 WI
= (1—13e Z hJCN+1.,'—/3f Z I,dzv+ 1,;€Xp (lfj) W
j=1 j=1 2

29

Furthermore, the logarithmic mean temperature
difference correction factor F = At,/At,, can be
expressed as

1-P,
_ MZPR,
T NTU,(R,—1)"

I

F (30)
Intermediate temperature ¢,;, , can be readily deter-
mined from the derived temperatures 7.,(x) and #.(x).
If Nis an even number, Sc = 1 and all eigenvalues are
distinct, for example, one has

N+1
t,(0) = Z hjcij
j=1

N+1

(1) = Z ld;exp (i)
J=1

L1 =

i=13,..,N-L
Gn

3. CALCULATION EXAMPLES

Figure 2 shows NTU, and NTU, curves as well as
F curves in the P—P, diagram for the 1-3 divided-
flow exchanger with the following features: Sc =1,
§,=03,6,=02,6;,=0.5x,=0.5and f, = 0.5. The
advantage of this kind of diagram was discussed in
ref. [7]. Figure 3 shows the same type of curves for
the 1-2 divided-flow exchanger with the charac-
teristics, such as Sc=1, ¢, = ¢, = 0.5, x, = 0.5 and
B. = 0.5. Comparing Fig. 2 with Fig. 3, one can find
that these curves are almost identical with the same
NTU values, if NTUs are less than 3.0. The trend of
curves in Fig. 3 is the same as that of curves in Fig.

/ 1 /
‘I.O-W‘“‘W
R Sc=1
N 8,=0.5
A

x,=0.5

0.8

0.6

0.4

0.2

0.0
0.

F1G. 2. Three tube passes (¢, = 0.3, ¢, = 0.2, &; = 0.5).
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FiG. 3. Two tube passes (g, = 0.5, &, = 0.5).

8 of ref. [4], there are peak values for the thermal
effectiveness P,. Increase of NTU will only cause P,
to decrease for the divided-flow heat exchangers with
even number N of tube passes. This is quite different
from the results for a conventional shell and tube heat
exchanger (shown in Fig. 4) in which further increase
of NTU will not alter the maximum value of P,. This
phenomenon of the divided-flow heat exchangers
means that in some portions of the heat transfer sur-
face the dimensionless temperature of the tubeside
fluid may exceed the dimensionless temperature of the
shellside fluid and reverse heat transfer takes place.
This is clearly undesirable. Therefore, peak values
should be avoided when such a type of exchanger with
an even number N of tube passes is to be designed.
However, the reverse heat transfer may be overcome
by shifting the entrance location of the shellside fluid.

F1G. 4. 1-2 conventional heat exchanger (¢, = 0.5, ¢, = 0.5).

4. PRESSURE LOSS

It is obvious that the ratio of the flow rate in sub-
region e to the flow rate in subregion f will affect the
pressure loss on the shellside. Here the pressure loss
AP, means the pressure loss along the shell pass with-
out consideration of baffles. Generally, pressure loss
AP is formed as [8]

AP ~ o°L (32)
where
1 laminar
x= 1.75 turbulent.

For a given heat exchanger with the shellside thermal

flow rate W,, AP can be described as
AP = o W*HL. (33)

The flow rate on the shellside will be distributed such
that

AP, = AP, = AP (34)
where
AP, = cW!L, APy=oWi(L—-L). (35
Therefore, one has
LW: = (L—L)Wi (36)
thus
or
L i
(z 3 ‘>
B = (38)

— TN
”(L:l)

Equations (37) and (38) show that the ratio . cannot
be chosen arbitrarily, once the ratio of x, is given,
because equation (34) has to be fulfilled.

In a conventional shell and tube heat exchanger the

pressure loss on the shellside is given as
AP¥ = gW'L. 39

Comparing equations (35) with equation (39), one
can obtain

AP, AP,
AP* =~ GWAL “0)
If AP, = AP, equation {40) can be rewritten as
AP, KL
APF= L “n

Insertion of equation (38) in equation (41) yields
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Vel 42)

Obviously, the right-hand side of equation (42) is
always less than 1.0, which means that the pressure
loss on the shellside in the divided-flow exchanger
is less than that in the conventional shell and tube
exchanger. Equation (41) or (42) can be used for the
hydraulic design of such a type of heat exchanger.

In the case where the shellside heat transfer resist-
ance is not the limiting factor, the variation of §, or
x. does not result in altering NTU, as well as NTU,.
Equation (42) can be directly applied to evaluating
merits of the divided-flow exchangers because of the
same heat transfer characteristics.

If the major heat transfer resistance lies on the
shellside, the division of the shellside thermal flow
rate W, (W, = W.+ W;) will affect the overall heat
transfer coefficient U. In general, the heat transfer
coefficient on the shellside is proportional to w®¢ (if
the flow on the shellside is turbulent) [9], therefore,

UA can be approximately expressed as
UA = bWCL +bWES(L—L,). (43)

In a conventional shell and tube heat exchanger with

the same flow rate on the shellside, there is
(UA)* = bW L. (44)

Comparison of equation (43) with equation (44)

yields
UA =H_IJ_I=NTU2,.ﬂ _+B06 1_5
(v NTUF¥ NTU L
45)
If AP, = AP, equation (45) can be rewritten as
UA —(1-8)*°
— 1_ 0.6 e
Wy = =80+ (46)

1 ( ! 1“'
AV

One should combine equation (42) with equation (46)
to analyse the influence of the divided-flow pattern
upon the characteristics of shell and tube exchangers,
if the shellside heat transfer resistance is controlling.

5. OPTIMUM ENTRANCE

Usually, divided-flow exchangers are designed with
the shellside entrance in the middle. This is not the
optimum location, regarding the thermal effectiveness
and pressure loss. Generally, the optimum entrance
location of the shellside fluid depends on factors, such
as the number of tube passes, the flow, NTU values,
the ratio of the tubeside thermal flow rate to the shell-
side thermal flow rate, if the maximum thermal effec-
tiveness P, is expected. A 1-1 divided-flow exchanger
with tube flow pattern Sc = 2 is taken as an example to
discuss the optimum entrance location of the shellside

fluid. According to the previous procedure, the related
temperatures can be derived (if NTU, # NTU /)

TU,
NTU,

t. = c—df.exp (. x)

T, = c+dexp (A.x)

NTU
te = p+qpPrexp (4x) NTUZ
1

Tt = p+qexp (4x) (47)
where

1

exp (Apxe) — Brexp (if)

q:
NTU

NTU,
p = —Brexp (lr)qﬁT—U,

NTU
1 —p—Brexp (4ex.)q NTU2

TU,
NTU,

d:

exp (Aexe) + P exp(4e xe)

¢ = 1—dexp(lx.)
NTU,

A
The thermal effectiveness P, is expressed as

NTU,
NTU,”

NTU,

le = NTU,+ B
i

A= NTU,—

Py =1(0) = c—dp. (48)
From equation (48) the influence of x, upon P, can
be analysed. It is worth emphasizing that with chang-
ing x., the ratio f, cannot be chosen arbitrarily and
B. is given by equation (38), if AP,. = AP, holds.

Considering equation (38) as a confined condition,
introducing a parameter p and noting f; = 1 — g, one
can determine the optimum entrance location x..
Setting

P d NTU, 49
2= Py= byt (49)
1 L
o=(-rg)L1=0 o
one has
0z a¢
5)—6; pa—x; 0 (51)
0z 0¢
5. — = 0. (52)

The optimum x, will be determined by solving equa-
tions (51) and (52) with the confined condition (50).
Figures 5-8 give curves of the thermal effectiveness P,
vs x, with such conditions as AP, = AP, Sc = 2 and
the turbulent flow on the shellside. Figures 5 and 7 are
valid for the case in which the tubeside heat transfer
resistance is controlling and Figs. 6 and 8 are suitable
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F1G. 5. One tube pass (NTU, = 1.0, Sc = 2, AP = AP,).

for the case where the major heat transfer resistance
lics on the shellside. Preliminary calculations show
that the optimum entrance of the shellside flow is not
always located at x, = 0.5. It varies with the ratio R,
and NTU. The value x, decreases with increase of R,.
If R, is greater than 0.5, x, is smaller than 0.5. If R,
is constant and NTU changes, the optimum x, will
also deviate from 0.5. With the same R, and x,, the
thermal effectiveness P, in Figs. 6 and 8 are smaller
than those in Figs. 5 and 7 because of the fact that the
division of the shellside flow affects the overall heat
transfer coefficient, if the major heat transfer resist-
ance is from the shellside flow. With increasing NTU,
the deviation of the optimum x, from 0.5 is smaller,
if the overall heat transfer coefficient is mainly con-
tributed by the tubeside heat transfer coefficient. On
the contrary, an increase of NTU makes the optimum
x. deviate more from 0.5, if the tubeside heat transfer

Y. XUAN et dl.
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F1G. 7. One tube pass (NTU, = 2.5, Sc = 2, AP, = AP,).

coefficient occupies the major part of the overall heat
transfer coefficient. These curves suggest that design-
ers of such a type of exchangers should reasonably
determine the entrance location of the shellside fluid
to reach the maximum thermal effectiveness without
extra cost. The analysis for the divided-flow with more
than one tube pass is similar.

6. CONCLUSION

(1) Heat transfer equations are derived forthe 1 — N
divided-flow exchanger with arbitrary ratio f,, vari-
able entrance location of the shellside fluid and two
types of the tubeside flow patterns. These equations
can be used to predict the temperatures of the tube-
side and shellside fluids at an arbitrary location in
the exchangers, thermal effectiveness and correction
factor.
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(2) A few examples are calculated and the graphs
of thermal effectiveness P, and mean temperature
difference correction factor F are made for 1-3 and
1-2 exchangers. Furthermore, a comparison of the
divided-flow exchanger with a conventional shell and
tube exchanger is carried out. For the former with an
even number N of tube passes, there exists a peak
value for P, and the reverse heat transfer may appar-
ently occur when NTU > 3.0.

(3) The influence of the division of the shellside
fluid upon the pressure loss and NTU is discussed.
The result can be applied to thermal and hydraulic
design of the divided-flow heat exchanger.

(4) There exists an optimum entrance location for
the shellside fluid. When R, is greater than 0.5, the
optimum entrance x, deviates from 0.5. Designers
should select the optimum entrance for the shellside
fluid in order to obtain the maximum thermal effec-
tiveness with lower pressure loss and without extra
investment.
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ANALYSE THERMIQUE DES ECHANGEURS TUBE-CALANDRE AVEC
ECOULEMENT DIVISE

Résumé—On fait ’analyse d’un échangeur thermique a écoulement séparé avec un nombre quelconque N

de passes dans le tube et les équations correspondantes sont écrites. Au moyen de ces équations sont

calculés I'efficacité thermique, le facteur de correction et la température en un point donné de la surface de

I’échangeur. On discute de la position optimale de I’entrée de I’écoulement c6té calandre et de I'influence
sur la perte de pression de la division de I’écoulement c6té tube.

UNTERSUCHUNG DES THERMISCHEN VERHALTENS VON
ROHRBUNDELWARMEUBERTRAGERN MIT GETEILTEM MANTELSTROM

Zusammenfassung—Das thermische Verhalten des Rohrbiindelwirmeiibertragers mit geteiltem Mantel-

strom wird fiir eine beliebige Zahl N von rohrseitigen Durchgingen untersucht und die Gleichungen

fiir den Temperaturverlauf werden hergeleitet. Mit Hilfe dieser Gleichungen kénnen die thermische

Leistung, der Korrekturfaktor fir die logarithmische mittlere Temperaturdifferenz und die Temperaturen

im Apparat berechnet werden. Aulerdem werden die optimale Lage des mantelseitigen Eintrittsstutzens
und der EinfluB der Aufteilung des Mantelstroms auf den Druckverlust diskutiert.

TEPMUYECKUUN AHAJIM3 KOXYXOTPYBHBIX TEINIOOBMEHHUKOB C
PA3JIEJTEHHBIMH ITOTOKAMU

Ammoramms—[IposeficH TepMHYCCKHH aHAaIA3 KOXYXOTPYOHBIX MHOTOXOJOBHIX TEILIOOGMEHHHKOB C

NPOU3BOJILHEIM YHCAOM N MeXTPYOHBIX XOZOB M HOJIyHEHH COOTBETCTBYIOLUME TEMOEPATYPHBIE COOT-

HouieHds. [To 3THM ypaBHEHHSM PpacCYMTaHBI K.ILI., CpeHHI NMONMpPAaBOMHBIA k03(UIHEHT Pa3HOCTH

TeMnepaTyp M TeMIeparypa NpH 3aJaHHOM PAcClOJIOKCHHH Ha NMOBEPXHOCTH TemwiooOMenHnka. Obcyx-

JAeTCA ONTHMAIBHOE PACTIONOXKEHHE BXOAA BHELIHETO HOTOKA H BIHAHHE Pa3fie/IeHIA BHELTHEro NOoToKa
Ha NOTEPH IaBJCHAA.



