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A~act-feral analysis for the divide-flow heat exchanger with an arbitrary number N of tubeside 
passes is made and corres~nding temperature equations are derived. By means of these equations thermal 
effectiveness, mean temperature difference correction factor and the temperature at a given location on the 
exchanger surface are calculated. Also, the optimum entrance location of the shellside flow and the influence 

of the division of the shellside flow upon the pressure loss are discussed. 

1. INTRODUCTION 

THERE are many industrial process reasons-better 
balance required between the shellside and the tube- 
side heat transfer coefficients, vibration problems, 
more effective use of available shellside pressure drop 
in low-pressure-hop cases-that lead to the appli- 
cation of shell and tube exchangers with various con- 
figurations. One of such exchangers is called the 
divided-flow heat exchanger, designated as the ‘J- 
type’ in TEMA standards [l]. Provided the shellside 
heat transfer resistance is not the limiting factor and 
entrance as well as exit losses are neglected, the shell- 
side pressure loss is reduced to approximately one 
eighth of that of the conventional shell and tube heat 
exchanger. 

Gardner [2] derived equations for the mean tem- 
perature difference of one tube pass divided-flow heat 
exchangers. The analysis of two tube pass and one 
shell pass divided-how exchangers was made by Kern 
and Carpenter [3]. Jaw [4] showed a simplified deri- 
vation for two tube passes and presented a new deri- 
vation for four tube passes. However, all these studies 
were restricted to the middle entrance of the shellside 
flow and even distribution of mass flow rate in each 
half of the exchanger as constant overall heat transfer 
coefficient U throughout the exchanger. 

Heat exchangers with one shell pass and N (N = 1, 
2, . . .) tube passes are often referred to as 1 -N ex- 
changers. The thermal analysis for I -N conventional 
heat exchangers has been carried out [5]. The purpose 
of this paper is to present an analysis method for 1 -N 
divided-flow heat exchangers with arbitrary NT&, 
arbitrary distribution of the mass ffow rate on the 
shellside and variable entrance locations of the shell- 
side flow. The formulas for calculating temperatures 
of the shellside fluid and of the tubeside fluid in each 
tube pass, the thermal effectiveness and the mean tem- 
perature difference correction factor Pwill be derived. 
The related graphs will be made. l-2 divided-flow 

exchangers will be taken as an example to be com- 
pared with conventional shell and tube exchangers. 
Also, the pressure loss on the shellside and the opti- 
mum entrance location of the shellside flow will be 
discussed. 

Figure 1 shows schematic representations of the 
heat transfer process in 1 -N divided-flow heat ex- 
changers. The flow pattern in (a) is designated as 
SC = 1 and the flow pattern in (b) as SC = 2. Because 
of the division of the shellside flow, the whole heat 
transfer region is divided into two subregions, which 
are designated as subregions e and f, respectively. 
In the analysis the following assumptions are made : 

(1) The shellside fluid is completely mixed at any 
transverse section. No bypassing and stratification 
occur. 

(2) Piecewise constant heat transfer coefficient : the 
heat transfer coefficient is assumed to be constant 
within one pass in each subregion, but it may vary 
with passes and subregions. 

(3) There is no phase change and heat losses are 
negligible. 

(4) The specific heat capacities are constant 
throughout the exchanger. 

As shown in Fig. 1, the origin of the coordinate 
system is always located on the left of subregion e. To 
facilitate the derivation, some dimensionless variables 
and parameters are introduced as follows : 

I ai a X=Z=A,=A 
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a heat transfer surface area along the flow T dimensionless temperature vector 

path [m’] u averall heat transfer coefficient 
A total heat transfer surface area of the [Wm-‘K-‘1 

exchanger [m ‘] ti’ thermal Bow rate w K-- ‘1 

b constant coefficient x dimensionless flow path coordinate 
c, d,p, q constant coefficients Z function defined by equation (49). 
C,, Dj eigenvectors 

E, F, W coeflicient matrices 

I: mean temperature difference correction Greek symbols 

factor 
; 

constant coefficient 

G, Y coefficient vectors division ratio of the shellside flow rate 

~j, Ej constant coefficients to be determined at ratio of N?“U, in tube pass a’ to the overall 

I unit matrix NTU of the exchanger 

1 flow location of fluid [m] 9 temperature [K] 

.L length of exchanger [m] 1 eigenvalue 

N number of tube passes P parameter 

NTU number of transfer units, 0 constant coefficient 

NTUl = UA/ti,, NTU2 = UAI I& 4 function defined by equation (50) 

P dimensionless temperature change cr) velocity of fluid [m s- ‘1” 

through the exchanger 

AP pressure loss [N m- ‘] 
R thermal flow rate ratio, R, = l@l/l@l, 

Subscripts 

R, = l&/l&$ 
e, E subregion e 

SC tubeside flow pattern shown in Fig. 1 
f, F subregion f 

intermediate temperature of the tubeside 
1,s shellside 

6,i-c I 2 tubeside 
fluid order number of elements of matrices. 

AL true mean temperature difference 
L.i 

A& logarithmic mean temperature difference 

t dimensionless temperature of the Superscripts 

tubeside fluid / inlet 

T dimensionless temperature of the ,I outlet 

shellside fluid * conventional shell and tube exchanger. 

thermal flow rate ratio B is introduced, which allows 
for arbitrary division of the shellside flow rate between 
two subregions. The shellside Auid is divided at any 

ratio j?, and its entrance may be located at different 
positions. According to the heat balance and by means 
of the above-defined dimensionless variables, tem- 

perature equations can be obtained for each sub- 
region. For subregion e (0 < x 6 x+J 

Obviously, the following relationships are valid : 
12’ 
c q= 1, pe+f3f-= 1 fl) 

(UA),(T,--tef) = If(+&% (i= l;&....,N) 

i= I (4) 

PI 
-= 

p2 
NTUi @, R _ 

NTU,=*= 2 (2) 

At the entrances and the exits of the exchangers une 
has 

For subregion f (xC < x G 1) 

T’= 1, t;=O, T”=I--I’,, t;;=P2. (3) 

In this paper, the theory for divided-flow exchangers 
is extended by introduction of the NTU-ratio Ed [5], 

which allows for different surface areas and heat trans- 
fer coefficients among the tube passes. Further, the 
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Regarding the relation cs , ci = 1, equations (4) and 

(5) as well as equations (6) and (7) can be rewritten 

as 

dt,,_ 
dx - 

+(-l)‘NTU,E,(T,-tt,,) (i= l,&...,N) 

(8) 

dT, _ NTU, 
dx 

- __ T,- F,$, E,t,oi 
8, 

(9) 

and 

dt, 
-= k(-l)‘NTU,e,(Tr-tfr) (i= 1,2,...,N) 
dx 

(10) 

dTr NTU’ T,+ ___ NTU, N 
_= -__ 
dx Bf j3r ,?, e1 tiZ 

(11) 

where the minus sign (-) and the positive sign (+) 
of sign (+) in the above-mentioned equations are 

valid for tube flow pattern SC = 1 and for tube flow 
pattern SC = 2, respectively, which are shown in 

Fig. 1. 
To solve these (2 + 2N) linear ordinary differential 

equations of the first order, the corresponding 
(2+2N) boundary conditions are needed. The con- 
crete expressions of the conditions are dependent on 
some factors, such as the tube pass number N (odd 
or even) and the tubeside flow pattern. Table 1 gives 
the tubeside boundary conditions and Table 2 the 

shellside. 
In matrix notation the homogeneous system of 

equations (8) and (9) appear in the form 

dT, 
---ET, 
dx (12) 

where T = (t,,, te2, , teN, Tc)T and E is a coefficient 
matrix with order (Nf l), the elements of which are 
given as follows : 

0 -x 1 

(a) Sc=l 

0 -x 1 

(b) Sc=2 

FIG. 1. Thermal scheme of l- -N divided-flow heat exchanger. 

0 i#j 
e, = 

f(-l)‘+‘NTU,q i=j 
i,j=1,2 N >“., 

el,N+ I = +-(-~)‘NTU,E~ i= 1,2,...,N 

-____ j= 1,2,...,N 

eN+ l.i = 

j= N+l. 

Similarly, the homogeneous system consisting of 
equations (10) and (11) can also be formed as 

dT’=FT_ 
dx ’ 

(13) 

where T, = (tn, tR, , t,, TJT and F is also a con- 
stant coefficient matrix with order (N+ l), the ele- 

ments of which are given as follows : 

i,j=1,2 N >“‘> 

hvt1 = k(-I)‘NTU,E, i= 1,2 ,..., N 

: 

NTU, E/ 

Bf 
j=1,2 N >“.> 

f N+IJ= 

_!!??! j=N+l. 

h 

Now we will seek a general solution matrix for each 
subregion by means of eigenvalues and eigenvectors. 
Assuming Cexp (2,x) to be a solution of system (12) 

one has 

(E-1,I)C = 0. (14) 

In order to obtain a non-zero solution for vector C 
one must have 

det (E-&I) = 0. (15) 

This is a polynomial equation of degree (N+ 1) in i,, 
and hence there are (N+ 1) roots 1, (j = 1,2,. , 

Tlr ti’py 

_--- -- 
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N+ I), which are called eigenvalues of matrix E and 
the corresponding vectors C, (j = 1,2,. . . , N+ 1) are 
called eigenvectors of E 

cj = (cl,* Qjt . . . 5 CN+ f,JT. 

In the same way, for the homogeneous system (13) 
there is 

(F - &I)D = 0 (16) 

det (F-&I) = 0. (17) 

From equations (16) and (17) one can obtain eigen- 
values /1, (j= 1,2,. . . , Nf 1) and corresponding 
eigenveetors D, 0’ = 1,2, . . . , N+ 1) 

13, = f4,4,, . . . > diyi ,.,)‘-. 

If matrices E and F have distinct eigenvalues, respec- 
tively, the unknown temperatures can be described as 

NfI 
T, = 1 h,C,exp (@) 

,= I 

N+ I 

(18) 

TF = c l,D,exp (&x) 
,= I 

(19) 

where h,, I, (j = I, 2,. . ,N+ 1) are constant coeffi- 
cients to be determined with the boundary conditions 
given in Tables 1 and 2. 

However, in the case that there are multiple eigen- 
values, solutions (18) and (19) may not be directly 
used and they must be corrected. For example, if L, 
is a root of multiplicity m and i, is a root of multi- 
plicity n, a solution of forms is suggested [6] to treat 
this case 

TF., = C,(X) exp (&jx> 

TF/ = D,(X) ev t&x) 

where C,(x) is a polynomial of degree (m- 1) and 
D,(X) is a polynomial of degree (n- 1) 

C,(x) =&+$+X+&x2+ . ..+p._,x”-’ (20) 

D/(X) = qo+q,x+qpx”+ .. .+q,,_ ,r ‘. (21) 

Substituting equations (20) and (21) into equations 
(12) and (13) and equating coefficients of X, one can 
obtain 

(E-&,Wo = ~1 (22) 

Table 2. Boundary conditions for T,(x) and T,(x) 
-.--.._ -- 

Location x = x, = LJL 
..__~_~ 

T(s) T,(&) = 1, T,(x,) = 1 
~_~______. 

(E-&,h-, = 0 

(E-&,VP~-~ = Cm- l)p,-, 

(E - Ai Up,- 3 = (m - 21p, - z 

(F-&,I)q,_ j = 0 

(F-4,I)q,z-x = (n- l)q,r- I 

(F-&,I)qn-, = (a-2)qn -2 

(F-&jI);, = 41. (23) 

Since det (E-A,,) = 0 in equations (22), the remaining 
non-homogeneous equations can be solved step by 
step, provided that the rank of (E--&I) is equal to 
the rank of the augmented matrix formed by (E - &,I) 
with non-homogeneous terms in equations (22). A 
similar result is also available for equation (23). On 
finding C,(x) and Q(x), one is able to obtain the 
general solution forms for the case of multiple eigen- 
values ii, or i, by substituting C,(x) for C, in equation 
(18) and D,(x) for 0, in equation (19). 

Coefficients h, and I, must be determined to derive 
the particular solution for the original problem. In the 
light of the boundary conditions given in Tables 1 and 
2 as well as equations (18) and (19), a matrix equation 
with order (2N+ 2) for these coefficients arises 

WY=G (24) 

where 

Y = (h,,&,. .,h,+ ,,f,,lz,. . . rt,v+ JT 

G= (0,O ,..., O,l, 1)’ 

if the boundary conditions for the shellside fluid are 
taken as the last two equations. 

Table 1. Boundary conditions for f&) and 6(,(x) 

X--O 

N 49 = t,i+ I = t,,.i+ 1 

even i=2,4.....N-2 

SC = 1 
t,, =o 

N b, = t + l = tci.i+ 1 

odd i-2,4 . . . . . N-l 
I,, =o 

N L = hi+ 1 = L.,+ 1 

even i= 1,3,...,N-I 

SC = 2 
N L = tei+ I = L_i+ I 
odd i= 1,3,...,N-2 

x = x, = L,/L x = I 

he = tfr CT = h+ I = ku+ I 
i= 1,2,...,N i= 1,3....,N-I 

L = h hi = hi+ I = hi+ 1 

i= 1,2,...,N i=2,4,...,N-2 
It, = 0 

tc, = tfi tr, = ha+ I = hi+ I 
i= 1,2,...,N i=2,4,...,N-l 

tf, = 0 
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Matrix W with (2Nf2) order, has elements which 
depend on the tube pass number, the tubeside flow 

pattern and the multiplicity of eigenvalues &, as well 
as 1,. For example, for the case that SC = 1, N is an 

even number and all eigenvalues are distinct, elements 
of matrix W are given as follows : 

from 

w,, = 

from 

WI/ = 

from 

L = Lx,,+ I at x = 0, one has 

1 

cy--ci+ 1.j 1 <j<N+l 

0 N+2<j<2N+2 

i=2,4,...,N-2; 

tfi = tfi.l+ I atx= l,onehas 

{ 

0 l<j<N+l 

G&,-d,+ r.,,) exp &,) N+2 <i < 2N+2 

i= 1,3,...,N-1; 

t,, = 0 at x = 0, one has 

from 

w - 
1 

clj l<j<N+l 

W- 0 N+26j<2N+2; 

t,, = tf, at x = x,, one has 

fc,, exp (L,x,) 1 <j< N+I 
W 

I+~.‘= l-d,,,exp(Ir,jx,) N+2<jG2N+2 

i=l,2 N; >.“’ 

from T, = 1 at x = x,, one has 

( 

cN+ I., exp (&xc) 1 < j < N+ 1 
W 2Nf I,, = 0 N+2<j<2N+2; 

from Tr = 1 at x = x,, one has 

i 

0 1 <j< N+l 
W a+ *,, = d N+ ,tiexp(lax,) N-?-2 d j d 2N+2 

wherejj = j-N- 1, ifN+Z <j < 2N+2. 

Then, Y can be calculated according to 

Y=W_‘G. (25) 

So far the temperatures T,(x), T,(x), t,(x) and tfi(x) 
(j = 1,2, . . , N) are determined. Thus, the outlet tem- 
peratures of T, and Tf appear in forms 

T: = T,(x = 0), T; = T,(x = 1) (26) 

and the final outlet temperature of the shellside fluid 
is 

and the temperature change of the shellside fluid in 
the divided-flow heat exchanger is 

P, = 1-T” = l-(~eTe(0)+~fTf(l)). (28) 

Therefore, the final temperature change of the tube- 
side fluid through the exchanger (called the thermal 
effectiveness) can be obtained 

P2 = y = (1-/?.r,(O)-/9,Tr(l)); 
z z 

Furthermore, the logarithmic mean temperature 
difference correction factor F = At,/At,,, can be 

expressed as 

I-P, 
In----- 

1-P,R, 

F = NTU>(R, - 1) ’ (30) 

Intermediate temperature ti,,+ , can be readily deter- 
mined from the derived temperatures t,,(x) and tfi(x). 

If N is an even number, SC = 1 and ail eigenvalues are 
distinct, for example, one has 

Nfl 

te,(“) = 1 hjcij i=2,4 ,...,N-2 

t L.lfI = 
,= I 
N+I 

tr,(l) = c @$exp(i,J i= 1,3 ,..., N-l. 
,= I 

(31) 

3. CALCULATION EXAMPLES 

Figure 2 shows NTU, and NTU2 curves as well as 
F curves in the P,-P, diagram for the l-3 divided- 

flow exchanger with the following features : SC = 1, 
E, = 0.3,~~ = O.&E, = O.&x, = 0.5andfi, = 0.5.The 
advantage of this kind of diagram was discussed in 
ref. [7]. Figure 3 shows the same type of curves for 
the l-2 divided-flow exchanger with the charac- 
teristics, such as SC = 1, E, = .Q = 0.5, x, = 0.5 and 
be = 0.5. Comparing Fig. 2 with Fig. 3, one can find 
that these curves are almost identical with the same 
NTU values, if NTUs are less than 3.0. The trend of 
curves in Fig. 3 is the same as that of curves in Fig. 

FIG. 2. Three tube passes (E , = 0.3, e2 = 0.2, E, = 0.5). 
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0.6 

P, 

0.4 

0.0 
0.0 0.2 0.4 P,“,” 0.6 1 .o 

FIG. 3. Two tube passes (E, = 0.5, s2 = 0.5). 

8 of ref. [4], there are peak values for the thermal 
effectiveness P,. Increase of NTU will only cause P, 

to decrease for the divided-flow heat exchangers with 
even number N of tube passes. This is quite different 
from the results for a conventiona shell and tube heat 
exchanger (shown in Fig. 4) in which further increase 
of NTU will not alter the maximum value of P,. This 
phenomenon of the divided-flow heat exchangers 
means that in some portions of the heat transfer sur- 
face the dimensionless temperature of the tubeside 
fluid may exceed the dimensionless temperature of the 
shellside fluid and reverse heat transfer takes place. 
This is clearly undesirable. Therefore, peak values 
should be avoided when such a type of exchanger with 
an even number N of tube passes is to be designed. 
However, the reverse heat transfer may be overcome 
by shifting the entrance location of the shellside fluid. 

0.6 

PI 2 

0.4 

0.0 
0.0 0.2 0.4 P20.6 0.6 1 .o 

FIG. 4. l-2 conventional heat exchanger (E, = 0.5, .s2 = 0.5). 

4. PRESSURE LOSS 

It is obvious that the ratio of the flow rate in sub- 
region e to the flow rate in subregion f will affect the 
pressure loss on the shellside. Here the pressure loss 
AP, means the pressure loss along the shell pass with- 
out consideration of baffles. Generally, pressure loss 
AP is formed as [8] 

AP N w”L (32) 

where 

( 

1 laminar 

’ = 1.75 turbulent. 

For a given heat exchanger with the shellside thermal 
flow rate @,, AP can be described as 

BP = a@L. (33) 

The flow rate on the shellside will be distributed such 
that 

where 

AP, = AP,, = AP,, (34) 

Aq, = o%L,, AP,, = o@(L- L,). (35) 

Therefore, one has 

L,@ = (L-LJ@ (36) 

thus 

1 ( > --1+1 
l--Be c 

(37) 

or 

L I;& 

c-4 & = -Fe 

1 

1+ g-1 
! ! 

i,a * (38) 

e 

Equations (37) and (38) show that the ratio j, cannot 
be chosen arbitrarily, once the ratio of x, is given, 
because equation (34) has to be fulfilled. 

In a conventional shell and tube heat exchanger the 
pressure loss on the shellside is given as 

AP,* = c&L. (3% 

Comparing equations (35) with equation (39), one 
can obtain 

If AP,, = APyn equation (40) can be rewritten as 

PZ Af’, 
AP; L’ 

Insertion of equation (38) in equation (41) yields 

(40) 
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!!5_ 
AP$ - 

B: 
(42) 

Obviously, the right-hand side of equation (42) is 
always less than 1.0, which means that the pressure 
loss on the shellside in the divided-flow exchanger 
is less than that in the conventional shell and tube 
exchanger. Equation (41) or (42) can be used for the 
hydraulic design of such a type of heat exchanger. 

In the case where the shellside heat transfer resist- 
ance is not the limiting factor, the variation of Be or 
x, does not result in altering NTU, as well as NTU,. 

Equation (42) can be directly applied to evaluating 
merits of the divided-flow exchangers because of the 
same heat transfer characteristics. 

If the major heat transfer resistance lies on the 
shellside, the division of the shellside thermal flow 
rate I@‘, (p, = I@e + I@r) will affect the overall heat 
transfer coefficient iJ. In general, the heat transfer 
coefficient on the shellside is proportional to w” 6 (if 

the flow on the shellside is turbulent) [9], therefore, 
UA can be approximately expressed as 

UA EG bl&‘,O ‘L,+bCi/,O “(L-L,). (43) 

In a conventional shell and tube heat exchanger with 
the same flow rate on the shellside, there is 

(UA)* = b@F6L. (44) 

Comparison of equation (43) with equation (44) 
yields 

(45) 
If AP,, = AP,, equation (45) can be rewritten as 

(46) 

One should combine equation (42) with equation (46) 
to analyse the influence of the divided-flow pattern 
upon the characteristics of shell and tube exchangers, 
if the shellside heat transfer resistance is controlling. 

5. OPTIMUM ENTRANCE 

Usually, divided-flow exchangers are designed with 
the shellside entrance in the middle. This is not the 
optimum location, regarding the thermal effectiveness 
and pressure loss. Generally, the optimum entrance 
location of the shellside fluid depends on factors, such 
as the number of tube passes, the flow, NTU values, 
the ratio of the tubeside thermal flow rate to the shell- 
side thermal flow rate, if the maximum thermal effec- 
tiveness P2 is expected. A l-l divided-flow exchanger 
with tube flow pattern SC = 2 is taken as an example to 
discuss the optimum entrance location of the shellside 

fluid. According to the previous procedure, the related 
temperatures can be derived (if NTUz # NTU,/fi,) 

NTU, 
f, = c - dB, exp (M m 

I 

T, = c + dexp (1,x) 

NTU, 

where 

Tr = P + q exp (A-4 (47) 

4= NTU2 
exp We) - Bf w (&) NTU 

I 

NTU, 
P = -Pfw (&)q--- NTU, 

NTUz 

d= 

1 -~-i$exp (k)q~ 

NTU2 
exp (k_) + Be exp(k) NTU 

I 

c = 1 -dexp (1,x,) 

i, = NTU2+ 
NTU, NTU, 
p, if= NTU,--- 

Be Bf 

The thermal effectiveness Pz is expressed as 

NTU, 
f’z = t,(O) = c-dfieNTu. 

I 
(48) 

From equation (48) the influence of x, upon Pz can 
be analysed. It is worth emphasizing that with chang- 
ing x,, the ratio be cannot be chosen arbitrarily and 
,$ is given by equation (38), if AP,, = AP,r holds. 

Considering equation (38) as a confined condition, 

introducing a parameter p and noting pr = l-/3_ one 
can determine the optimum entrance location x,. 
Setting 

NTU, 
z = P, = c-djj--- 

NTU, 

+= (l-&j-&l =o (50) 

one has 

az a4 
jy+qg=O 

e e 

aZ a4 
a+“ig=O 

The optimum x, will be determined by solving equa- 
tions (51) and (52) with the confined condition (SO). 
Figures 5-8 give curves of the thermal effectiveness P, 
vs x, with such conditions as AP,, = APsf, SC = 2 and 
the turbulent flow on the shellside. Figures 5 and 7 are 
valid for the case in which the tubeside heat transfer 
resistance is controlling and Figs. 6 and 8 are suitable 
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P* 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

O.Of 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

X 
e 

FIG. 5, One tube pass (NTCJ, = 1.0, SC = 2, AP,, = APsf). FIG. 7. One tube pass (NIT, = 2.5, SC = 2, AP, = APsf). 

for the case where the major heat transfer resistance 
lies on the shellside. Preliminary calculations show 
that the optimum entrance of the shellside flow is not 

always located at x, = 0.5. It varies with the ratio R, 
and NTU. The value x, decreases with increase of RI. 
If R, is greater than 0.5, x, is smaller than 0.5. If R, 
is constant and NTU changes, the optimum x, will 
also deviate from 0.5. With the same R, and x,, the 

thermal effectiveness P2 in Figs. 6 and 8 are smaller 
than those in Figs. 5 and 7 because of the fact that the 
division of the shellside flow affects the overall heat 
transfer coefficient, if the major heat transfer resist- 
ance is from the shellside flow. With increasing NTU, 
the deviation of the optimum x, from 0.5 is smaller, 
if the overall heat transfer coefficient is mainly con- 
tributed by the tubeside heat transfer coefficient. On 

the contrary, an increase of NTU makes the optimum 
x, deviate more from 0.5, if the tubeside heat transfer 

P* 

FIG. 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

o.om 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

X 

6. One tube pass (NW: = 1.0: SC = 2, AP,, = AP& 

1.0 

0.9 

0.8 

0.7 

0.6 

“. 

0.0 
0:O 011 Ok 0:3 0:4 015 016 0:7 0:s 0:9 1:O 

X 
e 

coefficient occupies the major part of the overall heat 
transfer coefficient. These curves suggest that design- 

ers of such a type of exchangers should reasonably 
determine the entrance location of the shellside Auid 
to reach the maximum thermal effectiveness without 
extra cost. The analysis for the divided-flow with more 
than one tube pass is similar. 

6. CONCLUSION 

(1) Heat transfer equations are derived for the 1 -N 
divided-flow exchanger with arbitrary ratio /I,, vari- 
able entrance location of the shellside fluid and two 

types of the tubeside flow patterns. These equations 
can be used to predict the temperatures of the tube- 
side and shellside fluids at an arbitrary location in 

the exchangers, thermal effectiveness and correction 
factor. 

FIG. 8. One tube pass (NTU: = 2.5, SC = 2, AP, = AP,J. 
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(2) A few examples are calculated and the graphs 

of thermal effectiveness P, and mean temperature 
difference correction factor F are made for l-3 and ‘. 

l-2 exchangers. Furthermore, a comparison of the 2. 
divided-flow exchanger with a conventional shell and 
tube exchanger is carried out. For the former with an 3. 
even number N of tube passes, there exists a peak 
value for P, and the reverse heat transfer may appar- 

4, 

ently occur when NTU > 3.0. 
(3) The influence of the division of the shellside 5. 

fluid upon the pressure loss and NTU is discussed. 
The result can be applied to thermal and hydraulic 
design of the divided-flow heat exchanger. 6. 

(4) There exists an optimum entrance location for 
the shellside fluid. When R, is greater than 0.5, the 7. 
optimum entrance x, deviates from 0.5. Designers 
should select the optimum entrance for the shellside 8, 
fluid in order to obtain the maximum thermal effec- 

tiveness with lower pressure loss and without extra 9. 
investment. 
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ANALYSE THERMIQUE DES ECHANGEURS TUBE-CALANDRE AVEC 
ECOULEMENT DIVISE 

RbumMn fait l’analyse dun &changeur thermique a Ccoulement &pare avec un nombre quelconque N 
de passes dans le tube et les equations correspondantes sont &rites. Au moyen de ces equations sont 
calculits l’efficaciti thermique, le facteur de correction et la temperature en un point donni de la surface de 
l’tchangeur. On discute de la position optimale de l’entree de l’tcoulement cot& calandre et de l’influence 

sur la perte de pression de la division de l’bcoulement coti tube. 

UNTERSUCHUNG DES THERMISCHEN VERHALTENS VON 
ROHRBf_JNDELWARMEUBERTRAGERN MIT GETEILTEM MANTELSTROM 

Zusammenfassung-Das thermische Verhalten des Rohrbiindelwarmeiibertragers mit geteiltem Mantel- 
Strom wird fur eine beliebige Zahl N von rohrseitigen Durchgangen untersucht und die Gleichungen 
fur den Temperaturverlauf werden hergeleitet. Mit Hilfe dieser Gleichungen konnen die thermische 
Leistung, der Korrekturfaktor fur die logarithmische mittlere Temperaturdifferenz und die Temperaturen 
im Apparat berechnet werden. AuBerdem werden die optimale Lage des mantelseitigen Eintrittsstutzens 

und der EinfluB der Aufteilung des Mantelstroms auf den Druckverlust diskutiert. 

TEPMllrECKkItt AHAJIH3 KOmOTPYEHbIX TEI-IJIOOBMEHHHKOB C 
PA3AEJIEHHbIMH I-IOTOKAMH 

kMOT~~pOBeJWH T~MHW-CKHfi aHaJlA3 ~oncyxorpy6~nrx MHOrOXOLlOBbIX TeMOO6MeHHSiKOB C 

IIpOH3BOJIbHbIM 'IHCJIOM N Mqy6HbIX XOLIOB H IIOJly'R.Hbl COOTLETCTBylolUHe TeMn~aTypHbIC COOT- 

HouenHn. II0 ~THM ypaeHeHalrm pawniraaar ~.n.n., cpen~~ii nonpanowd Ko3@$muie~ pa3~ocni 

rehrrreparyp H TehfnepaTypa np~ 3aiwuro~ pacnononrenna rra nosepxnocrrr Tennoo6MeHfiEKa. O6~yx- 

AaeTCRO~THM~bHOe~~~O~O~eHH~BXO~BH~~He~O~OTOKaHB~HKHHe~a3Ae~eHHnBHe~He~O~OTOKa 

HalIOTepEAaBJleHHK. 


